50,303 research outputs found

    Dark matter cores all the way down

    Get PDF
    We use high resolution simulations of isolated dwarf galaxies to study the physics of dark matter cusp-core transformations at the edge of galaxy formation: M200 = 10^7 - 10^9 Msun. We work at a resolution (~4 pc minimum cell size; ~250 Msun per particle) at which the impact from individual supernovae explosions can be resolved, becoming insensitive to even large changes in our numerical 'sub-grid' parameters. We find that our dwarf galaxies give a remarkable match to the stellar light profile; star formation history; metallicity distribution function; and star/gas kinematics of isolated dwarf irregular galaxies. Our key result is that dark matter cores of size comparable to the stellar half mass radius (r_1/2) always form if star formation proceeds for long enough. Cores fully form in less than 4 Gyrs for the M200 = 10^8 Msun and 14 Gyrs for the 10^9 Msun dwarf. We provide a convenient two parameter 'coreNFW' fitting function that captures this dark matter core growth as a function of star formation time and the projected stellar half mass radius. Our results have several implications: (i) we make a strong prediction that if LCDM is correct, then 'pristine' dark matter cusps will be found either in systems that have truncated star formation and/or at radii r > r_1/2; (ii) complete core formation lowers the projected velocity dispersion at r_1/2 by a factor ~2, which is sufficient to fully explain the 'too big to fail problem'; and (iii) cored dwarfs will be much more susceptible to tides, leading to a dramatic scouring of the subhalo mass function inside galaxies and groups.Comment: 20 pages; 9 figures; final version to appear in MNRAS including typos corrected in proo

    Statistical comparison of ensemble implementations of Grover's search algorithm to classical sequential searches

    Full text link
    We compare pseudopure state ensemble implementations, quantified by their initial polarization and ensemble size, of Grover's search algorithm to probabilistic classical sequential search algorithms in terms of their success and failure probabilities. We propose a criterion for quantifying the resources used by the ensemble implementation via the aggregate number of oracle invocations across the entire ensemble and use this as a basis for comparison with classical search algorithms. We determine bounds for a critical polarization such that the ensemble algorithm succeeds with a greater probability than the probabilistic classical sequential search. Our results indicate that the critical polarization scales as N^(-1/4) where N is the database size and that for typical room temperature solution state NMR, the polarization is such that the ensemble implementation of Grover's algorithm would be advantageous for N > 10^2

    From urban to national heat island: The effect of anthropogenic heat output on climate change in high population industrial countries

    Get PDF
    The project presented here sought to determine whether changes in anthropogenic thermal emission can have a measurable effect on temperature at the national level, taking Japan and Great Britain as type examples. Using energy consumption as a proxy for thermal emission, strong correlations (mean r2 = 0.90 and 0.89, respectively) are found between national equivalent heat output (HO) and temperature above background levels Δt averaged over 5‐ to 8‐yr periods between 1965 and 2013, as opposed to weaker correlations for CMIP5 model temperatures above background levels Δmt (mean r2 = 0.52 and 0.10). It is clear that the fluctuations in Δt are better explained by energy consumption than by present climate models, and that energy consumption can contribute to climate change at the national level on these timescales

    Momentum Flow Correlations from Event Shapes: Factorized Soft Gluons and Soft-Collinear Effective Theory

    Get PDF
    The distributions of two-jet event shapes contain information on hadronization in QCD. Near the two-jet limit, these distributions can be described by convolutions of nonperturbative event shape functions with the same distributions calculated in resummed perturbation theory. The shape functions, in turn, are determined by correlations of momentum flow operators with each other and with light-like Wilson lines, which describe the coupling of soft, wide-angle radiation to jets. We observe that leading power corrections to the mean values of event shapes are determined by the correlation of a single momentum flow operator with the relevant Wilson lines. This generalizes arguments for the universality of leading power corrections based on the low-scale behavior of the running coupling or resummation. We also show how a study of the angularity event shapes can provide information on correlations involving multiple momentum flow operators, giving a window to the system of QCD dynamics that underlies the variety of event shape functions. In deriving these results, we review, develop and compare factorization techniques in conventional perturbative QCD and soft-collinear effective theory (SCET). We give special emphasis to the elimination of double counting of momentum regions in these two formalisms.Comment: 25 pages revtex

    Estimations for the Single Diffractive production of the Higgs boson at the Tevatron and the LHC

    Full text link
    The single diffractive production of the standard model Higgs boson is computed using the diffractive factorization formalism, taking into account a parametrization for the Pomeron structure function provided by the H1 Collaboration. We compute the cross sections at next-to-leading order accuracy for the gluon fusion process, which includes QCD and electroweak corrections. The gap survival probability () is also introduced to account for the rescattering corrections due to spectator particles present in the interaction, and to this end we compare two different models for the survival factor. The diffractive ratios are predicted for proton-proton collisions at the Tevatron and the LHC for the Higgs boson mass of MHM_H = 120 GeV. Therefore, our results provide updated estimations for the diffractive ratios of the single diffractive production of the Higgs boson in the Tevatron and LHC kinematical regimes.Comment: 20 pages, 6 figures, 3 table

    Evaluation of protected areas in Côte d’Ivoire and Ghana, West Africa, using a remote sensing-based approach

    Get PDF
    This study assesses the representation of defined ecoregions, slope profiles, and species richness of threatened mammals in the International Union for Conservation of Nature (IUCN)-listed protected areas in Ghana and Côte d’Ivoire. It also evaluates the exposure of protected area categories to the cumulative degree of human modification and their vulnerability to future agricultural expansion. Spatial gap and statistical analyses were performed using quantitative data from publicly available online global databases. Analyses indicated key conservation priorities for both countries: (1) to increase the protection of the Guinean forest–savanna mosaic, West Sudanian savanna, and Eastern Guinean forests, especially of the Eastern Guinean forests’ ecoregion associated with the Guinean forests of the West Africa biodiversity hotspot; (2) to increase the protected area coverage of flat lands and low slopes; and (3) to enhance the size and connectivity of existing protected areas, including restoring degraded habitats. The study emphasizes that improving the ability of tropical protected areas to conserve nature and mitigate anthropogenic threats should be a global conservation priority. Improving the data quality and detail within the World Database on Protected Areas and ground-truthing them are recommended urgently to support accurate and informative assessments

    Variants within the MMP3 gene are associated with achilles tendinopathy: possible interaction with the COL5A1 gene

    Get PDF
    Objectives: Sequence variation within the COL5A1 and TNC genes are known to associate with Achilles tendinopathy. The primary aim of this case-control genetic association study was to investigate whether variants within the matrix metalloproteinase 3 (MMP3) gene also contributed to both Achilles tendinopathy and Achilles tendon rupture in a Caucasian population. A secondary aim was to establish whether variants within the MMP3 gene interacted with the COL5A1 rs12722 variant to raise risk of these pathologies. Methods: 114 subjects with symptoms of Achilles tendon pathology and 98 healthy controls were genotyped for MMP3 variants rs679620, rs591058 and rs650108. Results: As single markers, significant associations were found between the GG genotype of rs679620 (OR = 2.5, 95% CI 1.2 to 4.90, p = 0.010), the CC genotype of rs591058 (OR = 2.3, 95% CI 1.1 to 4.50, p = 0.023) and the AA genotype of rs650108 (OR = 4.9, 95% CI 1.0 to 24.1, p = 0.043) and risk of Achilles tendinopathy. The ATG haplotype (rs679620, rs591058, and rs650108) was under-represented in the tendinopathy group when compared to the control group (41% vs 53%, p = 0.038). Finally, the G allele of rs679620 and the T allele of COL5A1 rs12722 significantly interacted to raise risk of AT (p = 0.006). No associations were found between any of the MMP3 markers and Achilles tendon rupture. Conclusion: Variants within the MMP3 gene are associated with Achilles tendinopathy. Furthermore, the MMP3 gene variant rs679620 and the COL5A1 marker rs12722 interact to modify the risk of tendinopathy. These data further support a genetic contribution to a common sports related injur

    Squeezed: Why Rising Exposure to Health Care Costs Threatens the Health and Financial Well-Being of American Families

    Get PDF
    Examines U.S. healthcare costs compared with other industrialized countries, individual health insurance coverage, individual market regulations, and the impact of high deductible plans on the health of individuals with chronic disease
    corecore